A Practical Guide to Sentiment Analysis

This edited work presents studies and discussions that clarify the challenges and opportunities of sentiment analysis research. While sentiment analysis research has become very popular in the past ten years, most companies and researchers still approach it simply as a polarity detection problem. In...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Cambria, Erik (Επιμελητής έκδοσης), Das, Dipankar (Επιμελητής έκδοσης), Bandyopadhyay, Sivaji (Επιμελητής έκδοσης), Feraco, Antonio (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Socio-Affective Computing, 5
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04390nam a22005895i 4500
001 978-3-319-55394-8
003 DE-He213
005 20171220022232.0
007 cr nn 008mamaa
008 170411s2017 gw | s |||| 0|eng d
020 |a 9783319553948  |9 978-3-319-55394-8 
024 7 |a 10.1007/978-3-319-55394-8  |2 doi 
040 |d GrThAP 
050 4 |a R-RZ 
072 7 |a MBGR  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
082 0 4 |a 610  |2 23 
245 1 2 |a A Practical Guide to Sentiment Analysis  |h [electronic resource] /  |c edited by Erik Cambria, Dipankar Das, Sivaji Bandyopadhyay, Antonio Feraco. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VII, 196 p. 16 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Socio-Affective Computing,  |x 2509-5706 ;  |v 5 
505 0 |a Preface -- Affective Computing and Sentiment Analysis -- Many Facets of Sentiment Analysis -- Reflections on Sentiment/Opinion Analysis -- Challenges in Sentiment Analysis --  Sentiment Resources: Lexicons and Datasets -- Generative Models for Sentiment Analysis and Opinion Mining -- Social Media Summarization -- Deception Detection and Opinion Spam -- Concept-Level Sentiment Analysis with SenticNet -- Index. 
520 |a This edited work presents studies and discussions that clarify the challenges and opportunities of sentiment analysis research. While sentiment analysis research has become very popular in the past ten years, most companies and researchers still approach it simply as a polarity detection problem. In reality, sentiment analysis is a ‘suitcase problem’ that requires tackling many natural language processing subtasks, including microtext analysis, sarcasm detection, anaphora resolution, subjectivity detection and aspect extraction.   In this book, the authors propose an overview of the main issues and challenges associated with current sentiment analysis research and provide some insights on practical tools and techniques that can be exploited to both advance the state of the art in all sentiment analysis subtasks and explore new areas in the same context. Readers will discover sentiment mining techniques that can be exploited for the creation and automated upkeep of review and opinion aggregation websites, in which opinionated text and videos are continuously gathered from the Web and not restricted to just product reviews, but also to wider topics such as political issues and brand perception. The book also enables researchers to see how affective computing and sentiment analysis have a great potential as a sub-component technology for other systems. They can enhance the capabilities of customer relationship management and recommendation systems allowing, for example, to find out which features customers are particularly happy about or to exclude from the recommendations items that have received very negative feedbacks. Similarly, they can be exploited for affective tutoring and affective entertainment or for troll filtering and spam detection in online social communication. 
650 0 |a Medicine. 
650 0 |a Information storage and retrieval. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Applied linguistics. 
650 0 |a Statistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Biomedicine. 
650 2 4 |a Biomedicine general. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Applied Linguistics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
700 1 |a Cambria, Erik.  |e editor. 
700 1 |a Das, Dipankar.  |e editor. 
700 1 |a Bandyopadhyay, Sivaji.  |e editor. 
700 1 |a Feraco, Antonio.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319553924 
830 0 |a Socio-Affective Computing,  |x 2509-5706 ;  |v 5 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-55394-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)