The Data Science Design Manual

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Skiena, Steven S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Texts in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03875nam a22005535i 4500
001 978-3-319-55444-0
003 DE-He213
005 20180306142936.0
007 cr nn 008mamaa
008 170701s2017 gw | s |||| 0|eng d
020 |a 9783319554440  |9 978-3-319-55444-0 
024 7 |a 10.1007/978-3-319-55444-0  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Skiena, Steven S.  |e author. 
245 1 4 |a The Data Science Design Manual  |h [electronic resource] /  |c by Steven S. Skiena. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 445 p. 180 illus., 137 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Computer Science,  |x 1868-0941 
505 0 |a What is Data Science? -- Mathematical Preliminaries -- Data Munging -- Scores and Rankings -- Statistical Analysis -- Visualizing Data -- Mathematical Models -- Linear Algebra -- Linear and Logistic Regression -- Distance and Network Methods -- Machine Learning -- Big Data: Achieving Scale. 
520 |a This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com). 
650 0 |a Computer science. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 0 |a Pattern recognition. 
650 0 |a Mathematics. 
650 0 |a Visualization. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Visualization. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319554433 
830 0 |a Texts in Computer Science,  |x 1868-0941 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-55444-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)