Evolutionary Computation in Combinatorial Optimization 17th European Conference, EvoCOP 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings /

This book constitutes the refereed proceedings of the 17th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2017, held in Amsterdam, The Netherlands, in April 2017, co-located with the Evo*2017 events EuroGP, EvoMUSART and EvoApplications. The 16 revised full pap...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Hu, Bin (Επιμελητής έκδοσης), López-Ibáñez, Manuel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Computer Science, 10197
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04565nam a22005535i 4500
001 978-3-319-55453-2
003 DE-He213
005 20170308142538.0
007 cr nn 008mamaa
008 170308s2017 gw | s |||| 0|eng d
020 |a 9783319554532  |9 978-3-319-55453-2 
024 7 |a 10.1007/978-3-319-55453-2  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a UYA  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
082 0 4 |a 518  |2 23 
245 1 0 |a Evolutionary Computation in Combinatorial Optimization  |h [electronic resource] :  |b 17th European Conference, EvoCOP 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings /  |c edited by Bin Hu, Manuel López-Ibáñez. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 249 p. 46 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10197 
505 0 |a A Computational Study of Neighborhood Operators for Job-shop Scheduling Problems with Regular Objectives -- A Genetic Algorithm for Multi-Component Optimization Problems: the Case of the Travelling Thief Problem -- A Hybrid Feature Selection Algorithm Based on Large Neighborhood Search -- A Memetic Algorithm to Maximise the Employee Substitutability in Personnel Shift Scheduling -- Construct, Merge, Solve and Adapt versus Large Neighborhood Search for Solving the Multi-Dimensional Knapsack Problem: Which One Works Better When -- Decomposing SAT Instances with Pseudo Backbones -- Efficient Consideration of Soft Time Windows in a Large Neighborhood Search for the Districting and Routing Problem for Security Control -- Estimation of Distribution Algorithms for the Firefighter Problem -- LCS-Based Selective Route Exchange Crossover for the Pickup and Delivery Problem with Time Windows -- Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO -- Optimizing Charging Station Locations for Electric Car-Sharing Systems -- Selection of Auxiliary Objectives Using Landscape Features and Offline Learned Classifier -- Sparse, Continuous Policy Representations for Uniform Online Bin Packing via Regression of Interpolants -- The Weighted Independent Domination Problem: ILP Model and Algorithmic . 
520 |a This book constitutes the refereed proceedings of the 17th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2017, held in Amsterdam, The Netherlands, in April 2017, co-located with the Evo*2017 events EuroGP, EvoMUSART and EvoApplications. The 16 revised full papers presented were carefully reviewed and selected from 39 submissions. The papers cover both empirical and theoretical studies on a wide range of academic and real-world applications. The methods include evolutionary and memetic algorithms, large neighborhood search, estimation of distribution algorithms, beam search, ant colony optimization, hyper-heuristics and matheuristics. Applications include both traditional domains, such as knapsack problem, vehicle routing, scheduling problems and SAT; and newer domains such as the traveling thief problem, location planning for car-sharing systems and spacecraft trajectory optimization. Papers also study important concepts such as pseudo-backbones, phase transitions in local optima networks, and the analysis of operators. This wide range of topics makes the EvoCOP proceedings an important source for current research trends in combinatorial optimization. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Numerical analysis. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Numeric Computing. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Hu, Bin.  |e editor. 
700 1 |a López-Ibáñez, Manuel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319554525 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10197 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-55453-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)