Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science Novel Methods in Harmonic Analysis, Volume 2 /

The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Pesenson, Isaac (Επιμελητής έκδοσης), Le Gia, Quoc Thong (Επιμελητής έκδοσης), Mayeli, Azita (Επιμελητής έκδοσης), Mhaskar, Hrushikesh (Επιμελητής έκδοσης), Zhou, Ding-Xuan (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017.
Σειρά:Applied and Numerical Harmonic Analysis,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04776nam a22005655i 4500
001 978-3-319-55556-0
003 DE-He213
005 20170810150328.0
007 cr nn 008mamaa
008 170810s2017 gw | s |||| 0|eng d
020 |a 9783319555560  |9 978-3-319-55556-0 
024 7 |a 10.1007/978-3-319-55556-0  |2 doi 
040 |d GrThAP 
050 4 |a QA403-403.3 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.785  |2 23 
245 1 0 |a Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science  |h [electronic resource] :  |b Novel Methods in Harmonic Analysis, Volume 2 /  |c edited by Isaac Pesenson, Quoc Thong Le Gia, Azita Mayeli, Hrushikesh Mhaskar, Ding-Xuan Zhou. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a XIV, 510 p. 81 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
505 0 |a Introduction -- Characterization of Gevrey Regularity by a Class of FBI Transforms -- A Novel Mathematical Approach to the Theory of Translation Invariant Linear Systems -- Asymptotic Behaviour of the Fourier Transform of a Function of Bounded Variation -- Convergence and Regularization of Sampling Series -- Harmonic Analysis in Non-Euclidean Spaces: Theory and Application -- An Harmonic Analysis of Directed Graphs from Arithmetic Functions and Primes -- Sheaf and Duality Methods for Analyzing Multi-Model Systems -- On Boundary-Value Problems for a Partial Differential Equation with Caputo and Bessel Operator -- On the Solvability of the Zaremba Problem in Infinite Sectors and the Invertibility of Associated Singular Integral Operators -- On the Solution of the Oblique Derivative Problem by Constructive Runge-Walsh Concepts -- An Overview of Numerical Acceleration Techniques for Non-Linear Dimension Reduction -- Adaptive Density Estimation on the Circle by Nearly-Tight Frames -- Interactions between Kernels, Frames, and Persistent Homology -- Multi-Penalty Regularization for Detecting Relevant Variables -- Stable Likelihood Computation for Gaussian Random Fields. 
520 |a The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge–Walsh theorem for the oblique derivative problem of physical geodesy. 
650 0 |a Mathematics. 
650 0 |a Harmonic analysis. 
650 0 |a Fourier analysis. 
650 0 |a Computer mathematics. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Big Data. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Pesenson, Isaac.  |e editor. 
700 1 |a Le Gia, Quoc Thong.  |e editor. 
700 1 |a Mayeli, Azita.  |e editor. 
700 1 |a Mhaskar, Hrushikesh.  |e editor. 
700 1 |a Zhou, Ding-Xuan.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319555553 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-55556-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)