Newton’s Method: an Updated Approach of Kantorovich’s Theory

This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ezquerro Fernández, José Antonio (Συγγραφέας), Hernández Verón, Miguel Ángel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03169nam a22004935i 4500
001 978-3-319-55976-6
003 DE-He213
005 20170706120450.0
007 cr nn 008mamaa
008 170706s2017 gw | s |||| 0|eng d
020 |a 9783319559766  |9 978-3-319-55976-6 
024 7 |a 10.1007/978-3-319-55976-6  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Ezquerro Fernández, José Antonio.  |e author. 
245 1 0 |a Newton’s Method: an Updated Approach of Kantorovich’s Theory  |h [electronic resource] /  |c by José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a XII, 166 p. 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a The classic theory of Kantorovich -- Convergence conditions on the second derivative of the operator -- Convergence conditions on the k-th derivative of the operator -- Convergence conditions on the first derivative of the operator. 
520 |a This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular. 
650 0 |a Mathematics. 
650 0 |a Integral equations. 
650 0 |a Operator theory. 
650 0 |a Computer mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Integral Equations. 
700 1 |a Hernández Verón, Miguel Ángel.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319559759 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-55976-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)