Hyperplane Arrangements An Introduction /

This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties. The t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dimca, Alexandru (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03336nam a22005655i 4500
001 978-3-319-56221-6
003 DE-He213
005 20170329172029.0
007 cr nn 008mamaa
008 170329s2017 gw | s |||| 0|eng d
020 |a 9783319562216  |9 978-3-319-56221-6 
024 7 |a 10.1007/978-3-319-56221-6  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Dimca, Alexandru.  |e author. 
245 1 0 |a Hyperplane Arrangements  |h [electronic resource] :  |b An Introduction /  |c by Alexandru Dimca. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 200 p. 18 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Invitation to the Trip -- Hyperplane Arrangements and their Combinatorics -- Orlik–Solomon Algebras and de Rham Cohomology -- On the Topology of the Complement M(A) -- Milnor Fibers and Local Systems -- Characteristic Varieties and Resonance Varieties -- Logarithmic Connections and Mixed Hodge Structures -- Free Arrangements and de Rham Cohomology of Milnor Fibers. 
520 |a This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties. The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject. Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Functions of complex variables. 
650 0 |a Algorithms. 
650 0 |a Projective geometry. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Algorithms. 
650 2 4 |a Projective Geometry. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319562209 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-56221-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)