Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds

This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the sub...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mühlich, Uwe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Solid Mechanics and Its Applications, 230
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03362nam a22005175i 4500
001 978-3-319-56264-3
003 DE-He213
005 20170418153709.0
007 cr nn 008mamaa
008 170418s2017 gw | s |||| 0|eng d
020 |a 9783319562643  |9 978-3-319-56264-3 
024 7 |a 10.1007/978-3-319-56264-3  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Mühlich, Uwe.  |e author. 
245 1 0 |a Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds  |h [electronic resource] /  |c by Uwe Mühlich. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 125 p. 23 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Solid Mechanics and Its Applications,  |x 0925-0042 ;  |v 230 
505 0 |a 1 Introduction -- 2 Notes on point set topology -- 3 The finite dimensional real vector space -- 4 Tensor Algebra -- 5 Affine space and euclidean space -- 6 Tensor analysis in euclidean space -- 7 A primer on smooth manifolds -- B Further Reading. 
520 |a This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out. 
650 0 |a Engineering. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 0 |a Continuum mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Classical and Continuum Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319562636 
830 0 |a Solid Mechanics and Its Applications,  |x 0925-0042 ;  |v 230 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-56264-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)