Symmetries and Integrability of Difference Equations Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016 /

This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Levi, Decio (Επιμελητής έκδοσης), Rebelo, Raphaël (Επιμελητής έκδοσης), Winternitz, Pavel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:CRM Series in Mathematical Physics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03975nam a22005175i 4500
001 978-3-319-56666-5
003 DE-He213
005 20170630155016.0
007 cr nn 008mamaa
008 170630s2017 gw | s |||| 0|eng d
020 |a 9783319566665  |9 978-3-319-56666-5 
024 7 |a 10.1007/978-3-319-56666-5  |2 doi 
040 |d GrThAP 
050 4 |a QC1-999 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
245 1 0 |a Symmetries and Integrability of Difference Equations  |h [electronic resource] :  |b Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016 /  |c edited by Decio Levi, Raphaël Rebelo, Pavel Winternitz. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 435 p. 67 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CRM Series in Mathematical Physics 
505 0 |a Chapter 1. Continuous, Discrete and Ultradiscrete Painlevé Equations -- Chapter 2. Elliptic Hypergeometric Functions -- Chapter 3. Integrability of Difference Equations through Algebraic Entropy and Generalized Symmetries -- Chapter 4. Introduction to Linear and Nonlinear Integrable Theories in Discrete Complex Analysis -- Chapter 5. Discrete Integrable Systems, Darboux Transformations and Yang–Baxter Maps -- Chapter 6. Symmetry-Preserving Numerical Schemes -- Chapter 7. Introduction to Cluster Algebras -- Chapter 8. An Introduction to Difference Galois Theory -- Chapter 9. Lectures on Quantum Integrability: Lattices, Symmetries and Physics. 
520 |a This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers. 
650 0 |a Physics. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 1 4 |a Physics. 
650 2 4 |a Numerical and Computational Physics, Simulation. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Field Theory and Polynomials. 
700 1 |a Levi, Decio.  |e editor. 
700 1 |a Rebelo, Raphaël.  |e editor. 
700 1 |a Winternitz, Pavel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319566658 
830 0 |a CRM Series in Mathematical Physics 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-56666-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)