Symmetries and Integrability of Difference Equations Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016 /
This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Σειρά: | CRM Series in Mathematical Physics
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1. Continuous, Discrete and Ultradiscrete Painlevé Equations
- Chapter 2. Elliptic Hypergeometric Functions
- Chapter 3. Integrability of Difference Equations through Algebraic Entropy and Generalized Symmetries
- Chapter 4. Introduction to Linear and Nonlinear Integrable Theories in Discrete Complex Analysis
- Chapter 5. Discrete Integrable Systems, Darboux Transformations and Yang–Baxter Maps
- Chapter 6. Symmetry-Preserving Numerical Schemes
- Chapter 7. Introduction to Cluster Algebras
- Chapter 8. An Introduction to Difference Galois Theory
- Chapter 9. Lectures on Quantum Integrability: Lattices, Symmetries and Physics.