Linear Response Theory An Analytic-Algebraic Approach /

This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: De Nittis, Giuseppe (Συγγραφέας), Lein, Max (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematical Physics, 21
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03230nam a22005055i 4500
001 978-3-319-56732-7
003 DE-He213
005 20170621112038.0
007 cr nn 008mamaa
008 170621s2017 gw | s |||| 0|eng d
020 |a 9783319567327  |9 978-3-319-56732-7 
024 7 |a 10.1007/978-3-319-56732-7  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a De Nittis, Giuseppe.  |e author. 
245 1 0 |a Linear Response Theory  |h [electronic resource] :  |b An Analytic-Algebraic Approach /  |c by Giuseppe De Nittis, Max Lein. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 138 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 21 
505 0 |a Introduction -- Setting, Hypotheses and Main Results -- Mathematical Framework -- A Unified Framework for Common Physical Systems -- Studying the Dynamics -- The Kubo Formula and its Adiabatic Limit -- Applications. 
520 |a This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3–5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about possible future developments and applications of the theory to periodic light conductors. The book addresses a wide audience of mathematical physicists, focusing on the conceptual aspects rather than technical details and making algebraic methods accessible to analysts. 
650 0 |a Physics. 
650 0 |a Functional analysis. 
650 0 |a Mathematical physics. 
650 0 |a Condensed matter. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Functional Analysis. 
700 1 |a Lein, Max.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319567310 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 21 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-56732-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)