Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds A Geometric Approach to Modeling and Analysis /

This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lee, Taeyoung (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Leok, Melvin (http://id.loc.gov/vocabulary/relators/aut), McClamroch, N. Harris (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Interaction of Mechanics and Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04614nam a2200577 4500
001 978-3-319-56953-6
003 DE-He213
005 20191025121334.0
007 cr nn 008mamaa
008 170814s2018 gw | s |||| 0|eng d
020 |a 9783319569536  |9 978-3-319-56953-6 
024 7 |a 10.1007/978-3-319-56953-6  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Lee, Taeyoung.  |e author.  |0 (orcid)0000-0003-4982-4150  |1 https://orcid.org/0000-0003-4982-4150  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds  |h [electronic resource] :  |b A Geometric Approach to Modeling and Analysis /  |c by Taeyoung Lee, Melvin Leok, N. Harris McClamroch. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXVII, 539 p. 49 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
505 0 |a Mathematical Background -- Kinematics -- Classical Lagrangian and Hamiltonian Dynamics -- Langrangian and Hamiltonian Dynamics on (S1)n -- Lagrangian and Hamiltonian Dynamics on (S2)n -- Lagrangian and Hamiltonian Dynamics on SO(3) -- Lagrangian and Hamiltonian Dynamics on SE(3) -- Lagrangian and Hamiltonian Dynamics on Manifolds -- Rigid and Mult-body Systems -- Deformable Multi-body Systems -- Fundamental Lemmas of the Calculus of Variations -- Linearization as an Approximation to Lagrangian Dynamics on a Manifold. 
520 |a This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a System theory. 
650 0 |a Computer mathematics. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M1204X 
650 2 4 |a Vibration, Dynamical Systems, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/T15036 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
700 1 |a Leok, Melvin.  |e author.  |0 (orcid)0000-0002-8326-0830  |1 https://orcid.org/0000-0002-8326-0830  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a McClamroch, N. Harris.  |e author.  |0 (orcid)0000-0002-7536-5659  |1 https://orcid.org/0000-0002-7536-5659  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319569512 
776 0 8 |i Printed edition:  |z 9783319569529 
830 0 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
856 4 0 |u https://doi.org/10.1007/978-3-319-56953-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)