Granular Neural Networks, Pattern Recognition and Bioinformatics

This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration...

Full description

Bibliographic Details
Main Authors: Pal, Sankar K. (Author), Ray, Shubhra S. (Author), Ganivada, Avatharam (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Studies in Computational Intelligence, 712
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03419nam a22005055i 4500
001 978-3-319-57115-7
003 DE-He213
005 20170502151012.0
007 cr nn 008mamaa
008 170502s2017 gw | s |||| 0|eng d
020 |a 9783319571157  |9 978-3-319-57115-7 
024 7 |a 10.1007/978-3-319-57115-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Pal, Sankar K.  |e author. 
245 1 0 |a Granular Neural Networks, Pattern Recognition and Bioinformatics  |h [electronic resource] /  |c by Sankar K. Pal, Shubhra S. Ray, Avatharam Ganivada. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIX, 227 p. 54 illus., 31 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 712 
505 0 |a Introduction to Granular Computing, Pattern Recognition and Data Mining -- Classification using Fuzzy Rough Granular Neural Networks -- Clustering using Fuzzy Rough Granular Self-Organizing Map -- Fuzzy Rough Granular Neural Network and Unsupervised Feature Selection. 
520 |a This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Biology/Bioinformatics. 
700 1 |a Ray, Shubhra S.  |e author. 
700 1 |a Ganivada, Avatharam.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319571133 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 712 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-57115-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)