Metric Diffusion Along Foliations

Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Walczak, Szymon M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02635nam a22004575i 4500
001 978-3-319-57517-9
003 DE-He213
005 20170517144741.0
007 cr nn 008mamaa
008 170517s2017 gw | s |||| 0|eng d
020 |a 9783319575179  |9 978-3-319-57517-9 
024 7 |a 10.1007/978-3-319-57517-9  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 |a Walczak, Szymon M.  |e author. 
245 1 0 |a Metric Diffusion Along Foliations  |h [electronic resource] /  |c by Szymon M. Walczak. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 55 p. 19 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Wasserstein distance -- 2. Foliations and heat diffusion -- 3. Compact foliations -- 4. Metric diffusion -- 5. Metric diffusion for non-compact foliations. 
520 |a Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319575162 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-57517-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)