Guide to Convolutional Neural Networks A Practical Application to Traffic-Sign Detection and Classification /

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Habibi Aghdam, Hamed (Συγγραφέας), Jahani Heravi, Elnaz (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04065nam a22005295i 4500
001 978-3-319-57550-6
003 DE-He213
005 20170518151030.0
007 cr nn 008mamaa
008 170518s2017 gw | s |||| 0|eng d
020 |a 9783319575506  |9 978-3-319-57550-6 
024 7 |a 10.1007/978-3-319-57550-6  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
100 1 |a Habibi Aghdam, Hamed.  |e author.  |0 (orcid)http://orcid.org/0000-0002-4881-9694 
245 1 0 |a Guide to Convolutional Neural Networks  |h [electronic resource] :  |b A Practical Application to Traffic-Sign Detection and Classification /  |c by Hamed Habibi Aghdam, Elnaz Jahani Heravi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXIII, 282 p. 150 illus., 111 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Traffic Sign Detection and Recognition -- Pattern Classification -- Convolutional Neural Networks -- Caffe Library -- Classification of Traffic Signs -- Detecting Traffic Signs -- Visualizing Neural Networks -- Appendix A: Gradient Descend. 
520 |a This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis. Topics and features: Explains the fundamental concepts behind training linear classifiers and feature learning Discusses the wide range of loss functions for training binary and multi-class classifiers Illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks Presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks Describes two real-world examples of the detection and classification of traffic signs using deep learning methods Examines a range of varied techniques for visualizing neural networks, using a Python interface Provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems. 
650 0 |a Computer science. 
650 0 |a Computer organization. 
650 0 |a Computational linguistics. 
650 0 |a Pattern recognition. 
650 0 |a Automotive engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Computer Systems Organization and Communication Networks. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Language Translation and Linguistics. 
650 2 4 |a Automotive Engineering. 
700 1 |a Jahani Heravi, Elnaz.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319575490 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-57550-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)