Systems for Big Graph Analytics

There has been a surging interest in developing systems for analyzing big graphs generated by real applications, such as online social networks and knowledge graphs. This book aims to help readers get familiar with the computation models of various graph processing systems with minimal time investme...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yan, Da (Συγγραφέας), Tian, Yuanyuan (Συγγραφέας), Cheng, James (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03402nam a22005175i 4500
001 978-3-319-58217-7
003 DE-He213
005 20170601142527.0
007 cr nn 008mamaa
008 170601s2017 gw | s |||| 0|eng d
020 |a 9783319582177  |9 978-3-319-58217-7 
024 7 |a 10.1007/978-3-319-58217-7  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UT  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a COM032000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
100 1 |a Yan, Da.  |e author. 
245 1 0 |a Systems for Big Graph Analytics  |h [electronic resource] /  |c by Da Yan, Yuanyuan Tian, James Cheng. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VI, 92 p. 10 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a 1 Introduction -- 2 Pregel-Like Systems -- 3 Hands-On Experiences -- 4 Shared Memory Abstraction -- 5 Block-Centric Computation -- 6 Subgraph-Centric Graph Mining -- 7 Matrix-Based Graph Systems -- 8 Conclusions. 
520 |a There has been a surging interest in developing systems for analyzing big graphs generated by real applications, such as online social networks and knowledge graphs. This book aims to help readers get familiar with the computation models of various graph processing systems with minimal time investment. This book is organized into three parts, addressing three popular computation models for big graph analytics: think-like-a-vertex, think-likea- graph, and think-like-a-matrix. While vertex-centric systems have gained great popularity, the latter two models are currently being actively studied to solve graph problems that cannot be efficiently solved in vertex-centric model, and are the promising next-generation models for big graph analytics. For each part, the authors introduce the state-of-the-art systems, emphasizing on both their technical novelties and hands-on experiences of using them. The systems introduced include Giraph, Pregel+, Blogel, GraphLab, CraphChi, X-Stream, Quegel, SystemML, etc. Readers will learn how to design graph algorithms in various graph analytics systems, and how to choose the most appropriate system for a particular application at hand. The target audience for this book include beginners who are interested in using a big graph analytics system, and students, researchers and practitioners who would like to build their own graph analytics systems with new features. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Computers. 
650 0 |a Computer graphics. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Systems and Communication Service. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Tian, Yuanyuan.  |e author. 
700 1 |a Cheng, James.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319582160 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-58217-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)