Classical and Quantum Dynamics From Classical Paths to Path Integrals /

Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dittrich, Walter (Συγγραφέας), Reuter, Martin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:5th ed. 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04298nam a22004935i 4500
001 978-3-319-58298-6
003 DE-He213
005 20170513150938.0
007 cr nn 008mamaa
008 170513s2017 gw | s |||| 0|eng d
020 |a 9783319582986  |9 978-3-319-58298-6 
024 7 |a 10.1007/978-3-319-58298-6  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Dittrich, Walter.  |e author. 
245 1 0 |a Classical and Quantum Dynamics  |h [electronic resource] :  |b From Classical Paths to Path Integrals /  |c by Walter Dittrich, Martin Reuter. 
250 |a 5th ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVI, 489 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Appendix -- Solutions -- Index. 
520 |a Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 0 |a Nuclear physics. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Classical and Continuum Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Particle and Nuclear Physics. 
700 1 |a Reuter, Martin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319582979 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-58298-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)