Domain Adaptation in Computer Vision Applications

This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the fiel...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Csurka, Gabriela (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • A Comprehensive Survey on Domain Adaptation for Visual Applications
  • A Deeper Look at Dataset Bias.- Part I: Shallow Domain Adaptation Methods
  • Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation
  • Unsupervised Domain Adaptation based on Subspace Alignment
  • Learning Domain Invariant Embeddings by Matching Distributions
  • Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation
  • What To Do When the Access to the Source Data is Constrained?.- Part II: Deep Domain Adaptation Methods
  • Correlation Alignment for Unsupervised Domain Adaptation
  • Simultaneous Deep Transfer Across Domains and Tasks
  • Domain-Adversarial Training of Neural Networks.- Part III: Beyond Image Classification
  • Unsupervised Fisher Vector Adaptation for Re-Identification
  • Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA
  • From Virtual to Real World Visual Perception using Domain Adaptation – The DPM as Example
  • Generalizing Semantic Part Detectors Across Domains.- Part IV: Beyond Domain Adaptation: Unifying Perspectives
  • A Multi-Source Domain Generalization Approach to Visual Attribute Detection
  • Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives.