Pyomo — Optimization Modeling in Python

This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hart, William E. (Συγγραφέας), Laird, Carl D. (Συγγραφέας), Watson, Jean-Paul (Συγγραφέας), Woodruff, David L. (Συγγραφέας), Hackebeil, Gabriel A. (Συγγραφέας), Nicholson, Bethany L. (Συγγραφέας), Siirola, John D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Σειρά:Springer Optimization and Its Applications, 67
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05306nam a22006495i 4500
001 978-3-319-58821-6
003 DE-He213
005 20170527075028.0
007 cr nn 008mamaa
008 170527s2017 gw | s |||| 0|eng d
020 |a 9783319588216  |9 978-3-319-58821-6 
024 7 |a 10.1007/978-3-319-58821-6  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Hart, William E.  |e author. 
245 1 0 |a Pyomo — Optimization Modeling in Python  |h [electronic resource] /  |c by William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A. Hackebeil, Bethany L. Nicholson, John D. Siirola. 
250 |a 2nd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVIII, 277 p. 13 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 67 
505 0 |a 1. Introduction -- Part I. An Introduction to Pyomo -- 2. Mathematical Modeling and Optimization -- 3. Pyomo Overview -- 4. Pyomo Models and Components -- 5. The Pyomo Command -- 6. Data Command Files -- Part II. Advanced Features and Extensions -- 7. Nonlinear Programming with Pyomo -- 8. Structured Modeling with Blocks -- 9. Generalized Disjunctive Programming -- 10. Stochastic Programming Extensions -- 11. Differential Algebraic Equations -- 12. Mathematical Programs with Equilibrium Constraints -- 13. Bilevel Programming -- 14. Scripting -- A. A Brief Python Tutorial -- Index. 
520 |a This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. This second edition provides an expanded presentation of Pyomo’s modeling capabilities, providing a broader description of the software that will enable the user to develop and optimize models. Introductory chapters have been revised to extend tutorials; chapters that discuss advanced features now include the new functionalities added to Pyomo since the first edition including generalized disjunctive programming, mathematical programming with equilibrium constraints, and bilevel programming. Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. Review of the first edition: Documents a simple, yet versatile tool for modeling and solving optimization problems. … The book, by Bill Hart, Carl Laird, Jean-Paul Watson, and David Woodruff, is essential to the usability of Pyomo, serving as the Pyomo documentation. … has contents for both an inexperienced user, and a computational operations research expert. … with examples of each of the concepts discussed. —Nedialko B. Dimitrov, INFORMS Journal on Computing, Vol. 24 (4), Fall 2012. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer simulation. 
650 0 |a Computer mathematics. 
650 0 |a Computer software. 
650 0 |a Mathematical optimization. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Operations Research, Management Science. 
700 1 |a Laird, Carl D.  |e author. 
700 1 |a Watson, Jean-Paul.  |e author. 
700 1 |a Woodruff, David L.  |e author. 
700 1 |a Hackebeil, Gabriel A.  |e author. 
700 1 |a Nicholson, Bethany L.  |e author. 
700 1 |a Siirola, John D.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319588193 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 67 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-58821-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)