Strong Nonlinear Oscillators Analytical Solutions /

This textbook presents the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. It presents the author's original method for the analytical solution procedure of the pure nonlinear oscilla...

Full description

Bibliographic Details
Main Author: Cveticanin, Livija (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:2nd ed. 2018.
Series:Mathematical Engineering,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04843nam a2200565 4500
001 978-3-319-58826-1
003 DE-He213
005 20191025011909.0
007 cr nn 008mamaa
008 170529s2018 gw | s |||| 0|eng d
020 |a 9783319588261  |9 978-3-319-58826-1 
024 7 |a 10.1007/978-3-319-58826-1  |2 doi 
040 |d GrThAP 
050 4 |a TA355 
050 4 |a TA352-356 
072 7 |a TGMD4  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Cveticanin, Livija.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Strong Nonlinear Oscillators  |h [electronic resource] :  |b Analytical Solutions /  |c by Livija Cveticanin. 
250 |a 2nd ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 317 p. 93 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Engineering,  |x 2192-4732 
505 0 |a Preface to Second Edition -- Introduction -- Nonlinear Oscillators -- Pure Nonlinear Oscillator -- Free Vibrations -- Oscillators with Time-Variable Parameters -- Forced Vibrations -- Harmonically Excited Pure Nonlinear Oscillator -- Two-Degree-of-Freedom Oscillator -- Chaos in Oscillators -- Vibration of the Axially Purely Nonlinear Rod. 
520 |a This textbook presents the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. It presents the author's original method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameters is considered. In this second edition of the book, the number of approximate solving procedures for strong nonlinear oscillators is enlarged and a variety of procedures for solving free strong nonlinear oscillators is suggested. A method for error estimation is also given which is suitable to compare the exact and approximate solutions. Besides the oscillators with one degree-of-freedom, the one and two mass oscillatory systems with two-degrees-of-freedom and continuous oscillators are considered. The chaos and chaos suppression in ideal and non-ideal mechanical systems is explained. In this second edition more attention is given to the application of the suggested methodologies and obtained results to some practical problems in physics, mechanics, electronics and biomechanics. Thus, for the oscillator with two degrees-of-freedom, a generalization of the solving procedure is performed. Based on the obtained results, vibrations of the vocal cord are analyzed. In the book the vibration of the axially purely nonlinear rod as a continuous system is investigated. The developed solving procedure and the solutions are applied to discuss the muscle vibration. Vibrations of an optomechanical system are analyzed using the oscillations of an oscillator with odd or even quadratic nonlinearities. The extension of the forced vibrations of the system is realized by introducing the Ateb periodic excitation force which is the series of a trigonometric function. The book is self-consistent and suitable for researchers and as a textbook for students and also professionals and engineers who apply these techniques to the field of nonlinear oscillations. . 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Statistical physics. 
650 1 4 |a Vibration, Dynamical Systems, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/T15036 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13120 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/P33020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319588254 
776 0 8 |i Printed edition:  |z 9783319588278 
776 0 8 |i Printed edition:  |z 9783319864846 
830 0 |a Mathematical Engineering,  |x 2192-4732 
856 4 0 |u https://doi.org/10.1007/978-3-319-58826-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)