Perspectives in Lie Theory

Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics suc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Callegaro, Filippo (Επιμελητής έκδοσης), Carnovale, Giovanna (Επιμελητής έκδοσης), Caselli, Fabrizio (Επιμελητής έκδοσης), De Concini, Corrado (Επιμελητής έκδοσης), De Sole, Alberto (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer INdAM Series, 19
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03628nam a22005655i 4500
001 978-3-319-58971-8
003 DE-He213
005 20171207211346.0
007 cr nn 008mamaa
008 171207s2017 gw | s |||| 0|eng d
020 |a 9783319589718  |9 978-3-319-58971-8 
024 7 |a 10.1007/978-3-319-58971-8  |2 doi 
040 |d GrThAP 
050 4 |a QA252-252.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.48  |2 23 
245 1 0 |a Perspectives in Lie Theory  |h [electronic resource] /  |c edited by Filippo Callegaro, Giovanna Carnovale, Fabrizio Caselli, Corrado De Concini, Alberto De Sole. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 461 p. 2788 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer INdAM Series,  |x 2281-518X ;  |v 19 
505 0 |a Part I Lecture notes. - 1 Introduction to vertex algebras, Poisson vertex algebras, and integrable Hamiltonian PDE -- 2 An introduction to algebras of chiral differential operators -- 3 Representations of Lie Superalgebras -- 4 Introduction toW-algebras and their representation theory. Part II Contributed papers -- 5 Representations of the framisation of the Temperley–Lieb algebra -- 6 Some semi-direct products with free algebras of symmetric invariants -- 7 On extensions of affine vertex algebras at half-integer levels -- 8 Dirac cohomology in representation theory -- 9 Superconformal Vertex Algebras and Jacobi Forms -- 10 Centralizers of nilpotent elements and related problems -- 11 Pluri-Canonical Models of Supersymmetric Curves -- 12 Report on the Broué-Malle-Rouquier conjectures -- 13 A generalization of the Davis-Januszkiewicz construction -- 14 Restrictions of free arrangements and the division theorem -- 15 The pure braid groups and their relatives -- 16 Homological representations of braid groups and the space of conformal blocks -- 17 Totally nonnegative matrices, quantum matrices and back, via Poisson geometry. 
520 |a Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics. 
650 0 |a Mathematics. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Algebraic topology. 
650 0 |a Combinatorics. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Combinatorics. 
700 1 |a Callegaro, Filippo.  |e editor. 
700 1 |a Carnovale, Giovanna.  |e editor. 
700 1 |a Caselli, Fabrizio.  |e editor. 
700 1 |a De Concini, Corrado.  |e editor. 
700 1 |a De Sole, Alberto.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319589701 
830 0 |a Springer INdAM Series,  |x 2281-518X ;  |v 19 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-58971-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)