Foraging-Inspired Optimisation Algorithms

This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Brabazon, Anthony (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), McGarraghy, Seán (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Natural Computing Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03745nam a2200601 4500
001 978-3-319-59156-8
003 DE-He213
005 20191022092916.0
007 cr nn 008mamaa
008 180926s2018 gw | s |||| 0|eng d
020 |a 9783319591568  |9 978-3-319-59156-8 
024 7 |a 10.1007/978-3-319-59156-8  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
050 4 |a QA76.63 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UY  |2 thema 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Brabazon, Anthony.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Foraging-Inspired Optimisation Algorithms  |h [electronic resource] /  |c by Anthony Brabazon, Seán McGarraghy. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVIII, 478 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 1619-7127 
505 0 |a Introduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions. 
520 |a This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains. 
650 0 |a Computers. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Decision making. 
650 1 4 |a Theory of Computation.  |0 http://scigraph.springernature.com/things/product-market-codes/I16005 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Operations Research, Management Science.  |0 http://scigraph.springernature.com/things/product-market-codes/M26024 
650 2 4 |a Operations Research/Decision Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/521000 
700 1 |a McGarraghy, Seán.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319591551 
776 0 8 |i Printed edition:  |z 9783319591575 
776 0 8 |i Printed edition:  |z 9783030096403 
830 0 |a Natural Computing Series,  |x 1619-7127 
856 4 0 |u https://doi.org/10.1007/978-3-319-59156-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)