|
|
|
|
LEADER |
03745nam a2200601 4500 |
001 |
978-3-319-59156-8 |
003 |
DE-He213 |
005 |
20191022092916.0 |
007 |
cr nn 008mamaa |
008 |
180926s2018 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319591568
|9 978-3-319-59156-8
|
024 |
7 |
|
|a 10.1007/978-3-319-59156-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA75.5-76.95
|
050 |
|
4 |
|a QA76.63
|
072 |
|
7 |
|a UY
|2 bicssc
|
072 |
|
7 |
|a COM014000
|2 bisacsh
|
072 |
|
7 |
|a UY
|2 thema
|
072 |
|
7 |
|a UYA
|2 thema
|
082 |
0 |
4 |
|a 004.0151
|2 23
|
100 |
1 |
|
|a Brabazon, Anthony.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Foraging-Inspired Optimisation Algorithms
|h [electronic resource] /
|c by Anthony Brabazon, Seán McGarraghy.
|
250 |
|
|
|a 1st ed. 2018.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2018.
|
300 |
|
|
|a XVIII, 478 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Natural Computing Series,
|x 1619-7127
|
505 |
0 |
|
|a Introduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions.
|
520 |
|
|
|a This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains.
|
650 |
|
0 |
|a Computers.
|
650 |
|
0 |
|a Computational intelligence.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Operations research.
|
650 |
|
0 |
|a Management science.
|
650 |
|
0 |
|a Decision making.
|
650 |
1 |
4 |
|a Theory of Computation.
|0 http://scigraph.springernature.com/things/product-market-codes/I16005
|
650 |
2 |
4 |
|a Computational Intelligence.
|0 http://scigraph.springernature.com/things/product-market-codes/T11014
|
650 |
2 |
4 |
|a Artificial Intelligence.
|0 http://scigraph.springernature.com/things/product-market-codes/I21000
|
650 |
2 |
4 |
|a Operations Research, Management Science.
|0 http://scigraph.springernature.com/things/product-market-codes/M26024
|
650 |
2 |
4 |
|a Operations Research/Decision Theory.
|0 http://scigraph.springernature.com/things/product-market-codes/521000
|
700 |
1 |
|
|a McGarraghy, Seán.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319591551
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319591575
|
776 |
0 |
8 |
|i Printed edition:
|z 9783030096403
|
830 |
|
0 |
|a Natural Computing Series,
|x 1619-7127
|
856 |
4 |
0 |
|u https://doi.org/10.1007/978-3-319-59156-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SCS
|
950 |
|
|
|a Computer Science (Springer-11645)
|