Big Data Factories Collaborative Approaches /

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Matei, Sorin Adam (Επιμελητής έκδοσης), Jullien, Nicolas (Επιμελητής έκδοσης), Goggins, Sean P. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Computational Social Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04371nam a22005655i 4500
001 978-3-319-59186-5
003 DE-He213
005 20171128180908.0
007 cr nn 008mamaa
008 171128s2017 gw | s |||| 0|eng d
020 |a 9783319591865  |9 978-3-319-59186-5 
024 7 |a 10.1007/978-3-319-59186-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Big Data Factories  |h [electronic resource] :  |b Collaborative Approaches /  |c edited by Sorin Adam Matei, Nicolas Jullien, Sean P. Goggins. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VI, 141 p. 18 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Social Sciences,  |x 2509-9574 
505 0 |a Chapter1. Introduction -- Part 1: Theoretical Principles and Approaches to Data Factories --  Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration -- Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science -- Part 2: Theoretical principles and ideas for designing and deploying data factory approaches -- Chapter4. Levels of Trace Data for Social and Behavioral Science Research -- Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations -- Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures -- Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs -- Chapter7. Lessons learned from a decade of FLOSS data collection -- Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations -- Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes. 
520 |a The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com. 
650 0 |a Computer science. 
650 0 |a Big data. 
650 0 |a Research  |x Moral and ethical aspects. 
650 0 |a Data mining. 
650 0 |a Application software. 
650 0 |a Bioinformatics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences. 
650 2 4 |a Research Ethics. 
700 1 |a Matei, Sorin Adam.  |e editor. 
700 1 |a Jullien, Nicolas.  |e editor. 
700 1 |a Goggins, Sean P.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319591858 
830 0 |a Computational Social Sciences,  |x 2509-9574 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-59186-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)