Big Data Factories Collaborative Approaches /

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Matei, Sorin Adam (Επιμελητής έκδοσης), Jullien, Nicolas (Επιμελητής έκδοσης), Goggins, Sean P. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Computational Social Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter1. Introduction
  • Part 1: Theoretical Principles and Approaches to Data Factories
  •  Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration
  • Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science
  • Part 2: Theoretical principles and ideas for designing and deploying data factory approaches
  • Chapter4. Levels of Trace Data for Social and Behavioral Science Research
  • Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations
  • Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures
  • Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs
  • Chapter7. Lessons learned from a decade of FLOSS data collection
  • Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations
  • Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes.