Mesh Dependence in PDE-Constrained Optimisation An Application in Tidal Turbine Array Layouts /

This book provides an introduction to PDE-constrained optimisation using finite elements and the adjoint approach. The practical impact of the mathematical insights presented here are demonstrated using the realistic scenario of the optimal placement of marine power turbines, thereby illustrating th...

Full description

Bibliographic Details
Main Authors: Schwedes, Tobias (Author), Ham, David A. (Author), Funke, Simon W. (Author), Piggott, Matthew D. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Mathematics of Planet Earth
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03508nam a22005295i 4500
001 978-3-319-59483-5
003 DE-He213
005 20170707142202.0
007 cr nn 008mamaa
008 170707s2017 gw | s |||| 0|eng d
020 |a 9783319594835  |9 978-3-319-59483-5 
024 7 |a 10.1007/978-3-319-59483-5  |2 doi 
040 |d GrThAP 
100 1 |a Schwedes, Tobias.  |e author. 
245 1 0 |a Mesh Dependence in PDE-Constrained Optimisation  |h [electronic resource] :  |b An Application in Tidal Turbine Array Layouts /  |c by Tobias Schwedes, David A. Ham, Simon W. Funke, Matthew D. Piggott. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VIII, 110 p. 24 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics of Planet Earth 
505 0 |a 1. Introduction -- 2. Problem formulation -- 3. Shallow water equations -- 4. Aspects of the numerical solution -- 5. Optimisation methods -- 6. Mesh independent optimisation in 1-D -- 7. Mesh-dependence for Poisson constrained problem -- Index. 
520 |a This book provides an introduction to PDE-constrained optimisation using finite elements and the adjoint approach. The practical impact of the mathematical insights presented here are demonstrated using the realistic scenario of the optimal placement of marine power turbines, thereby illustrating the real-world relevance of best-practice Hilbert space aware approaches to PDE-constrained optimisation problems. Many optimisation problems that arise in a real-world context are constrained by partial differential equations (PDEs). That is, the system whose configuration is to be optimised follows physical laws given by PDEs. This book describes general Hilbert space formulations of optimisation algorithms, thereby facilitating optimisations whose controls are functions of space. It demonstrates the importance of methods that respect the Hilbert space structure of the problem by analysing the mathematical drawbacks of failing to do so. The approaches considered are illustrated using the optimisation problem arising in tidal array layouts mentioned above. This book will be useful to readers from engineering, computer science, mathematics and physics backgrounds interested in PDE-constrained optimisation and their real-world applications. 
650 0 |a Mathematics. 
650 0 |a Environmental sciences. 
650 0 |a Partial differential equations. 
650 0 |a Computer mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics of Planet Earth. 
650 2 4 |a Environmental Science and Engineering. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Continuous Optimization. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Ham, David A.  |e author. 
700 1 |a Funke, Simon W.  |e author. 
700 1 |a Piggott, Matthew D.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319594828 
830 0 |a Mathematics of Planet Earth 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-59483-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)