Finite and Profinite Quantum Systems

This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Vourdas, Apostolos (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Quantum Science and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03674nam a22005295i 4500
001 978-3-319-59495-8
003 DE-He213
005 20170717170824.0
007 cr nn 008mamaa
008 170717s2017 gw | s |||| 0|eng d
020 |a 9783319594958  |9 978-3-319-59495-8 
024 7 |a 10.1007/978-3-319-59495-8  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Vourdas, Apostolos.  |e author. 
245 1 0 |a Finite and Profinite Quantum Systems  |h [electronic resource] /  |c by Apostolos Vourdas. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 196 p. 7 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Quantum Science and Technology,  |x 2364-9054 
505 0 |a Mathematical symbols -- 1 Introduction -- 2 Partial orders and Pontryagin duality -- 3 The ring ℤ (d) -- 4 Quantum systems with variables in ℤ (d) -- 5 Finite Geometries and Mutually Unbiased Bases -- 6 Quantum logic of finite quantum systems -- 7 Galois fields -- 8 Quantum systems with variables in GF(pe) -- 9 p-adic numbers and profinite groups -- 10 A quantum system with positions in the profinite group ℤp -- 11 A quantum system with positions in the profinite group ℤ -- Index. 
520 |a This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and quantum computing, two-dimensional electron systems in magnetic fields and the magnetic translation group, the quantum Hall effect, other areas in condensed matter physics, and Fast Fourier Transforms. The monograph combines ideas from quantum mechanics with discrete mathematics, algebra, and number theory. It is suitable for graduate students and researchers in quantum physics, mathematics and computer science. 
650 0 |a Physics. 
650 0 |a Quantum computers. 
650 0 |a Discrete mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 0 |a Quantum optics. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Quantum Computing. 
650 2 4 |a Quantum Optics. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319594941 
830 0 |a Quantum Science and Technology,  |x 2364-9054 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-59495-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)