Wavelets in Functional Data Analysis

Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorologica...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Morettin, Pedro A. (Συγγραφέας), Pinheiro, Aluísio (Συγγραφέας), Vidakovic, Brani (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02674nam a22005055i 4500
001 978-3-319-59623-5
003 DE-He213
005 20171107222909.0
007 cr nn 008mamaa
008 171107s2017 gw | s |||| 0|eng d
020 |a 9783319596235  |9 978-3-319-59623-5 
024 7 |a 10.1007/978-3-319-59623-5  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Morettin, Pedro A.  |e author. 
245 1 0 |a Wavelets in Functional Data Analysis  |h [electronic resource] /  |c by Pedro A. Morettin, Aluísio Pinheiro, Brani Vidakovic. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VIII, 106 p. 44 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Preface -- Introduction Examples of Functional Data -- Wavelets -- Wavelet Shrinkage -- Wavelet-based Andrews Plots -- Functional ANOVA -- Further topics. 
520 |a Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Mathematical models. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
700 1 |a Pinheiro, Aluísio.  |e author. 
700 1 |a Vidakovic, Brani.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319596228 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-59623-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)