Robust Representation for Data Analytics Models and Applications /

This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Li, Sheng (Συγγραφέας), Fu, Yun (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03244nam a22005295i 4500
001 978-3-319-60176-2
003 DE-He213
005 20170810143643.0
007 cr nn 008mamaa
008 170810s2017 gw | s |||| 0|eng d
020 |a 9783319601762  |9 978-3-319-60176-2 
024 7 |a 10.1007/978-3-319-60176-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Li, Sheng.  |e author. 
245 1 0 |a Robust Representation for Data Analytics  |h [electronic resource] :  |b Models and Applications /  |c by Sheng Li, Yun Fu. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 224 p. 52 illus., 49 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
505 0 |a Introduction -- Fundamentals of Robust Representations -- Part 1: Robust Representation Models -- Robust Graph Construction -- Robust Subspace Learning -- Robust Multi-View Subspace Learning -- Part 11: Applications -- Robust Representations for Collaborative Filtering -- Robust Representations for Response Prediction -- Robust Representations for Outlier Detection -- Robust Representations for Person Re-Identification -- Robust Representations for Community Detection -- Index. 
520 |a This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Fu, Yun.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319601755 
830 0 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-60176-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)