Combinatorial Set Theory With a Gentle Introduction to Forcing /

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including R...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Halbeisen, Lorenz J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03671nam a22004815i 4500
001 978-3-319-60231-8
003 DE-He213
005 20171221000950.0
007 cr nn 008mamaa
008 171221s2017 gw | s |||| 0|eng d
020 |a 9783319602318  |9 978-3-319-60231-8 
024 7 |a 10.1007/978-3-319-60231-8  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Halbeisen, Lorenz J.  |e author. 
245 1 0 |a Combinatorial Set Theory  |h [electronic resource] :  |b With a Gentle Introduction to Forcing /  |c by Lorenz J. Halbeisen. 
250 |a 2nd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVI, 594 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a The Setting -- First-Order Logic in a Nutshell -- Axioms of Set Theory -- Overture: Ramsey's Theorem -- Cardinal Relations in ZF Only -- Forms of Choice -- How to Make Two Balls from One -- Models of Set Theory with Atoms -- Thirteen Cardinals and Their Relations -- The Shattering Number Revisited -- Happy Families and Their Relatives -- Coda: A Dual Form of Ramsey’s Theorem -- The Idea of Forcing -- Martin's Axiom -- The Notion of Forcing -- Proving Unprovability -- Models in Which AC Fails -- Combining Forcing Notions -- Models in Which p=c -- Suslin’s Problem -- Properties of Forcing Extensions -- Cohen Forcing Revisited -- Sacks Forcing -- Silver-Like Forcing Notions -- Miller Forcing -- Mathias Forcing -- How Many Ramsey Ultrafilters Exist? -- Combinatorial Properties of Sets of Partitions -- Suite. 
520 |a This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study. 
650 0 |a Mathematics. 
650 0 |a Mathematical logic. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319602301 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-60231-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)