Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries

This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in confined geometries driven by an applied temperature gradient play an important role in a range of applications, including thermal management, such as heat pipes, thermosyphon...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Qin, Tongran (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03965nam a22005055i 4500
001 978-3-319-61331-4
003 DE-He213
005 20170725133819.0
007 cr nn 008mamaa
008 170725s2017 gw | s |||| 0|eng d
020 |a 9783319613314  |9 978-3-319-61331-4 
024 7 |a 10.1007/978-3-319-61331-4  |2 doi 
040 |d GrThAP 
050 4 |a QC310.15-319 
072 7 |a PHH  |2 bicssc 
072 7 |a SCI065000  |2 bisacsh 
082 0 4 |a 536.7  |2 23 
100 1 |a Qin, Tongran.  |e author. 
245 1 0 |a Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries  |h [electronic resource] /  |c by Tongran Qin. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVIII, 209 p. 63 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Chapter 1. Introduction -- Chapter 2. Mathematical model -- Chapter 3. Convection at atmospheric conditions -- Chapter 4. Convection under pure vapor -- Chapter 5. Convection at reduced pressures -- Chapter 6. Linear stability analysis -- Chapter 7. Conclusions and recommendations. 
520 |a This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in confined geometries driven by an applied temperature gradient play an important role in a range of applications, including thermal management, such as heat pipes, thermosyphons, capillary pumped loops and other evaporative cooling devices. Previously, this problem has been addressed using a piecemeal approach that relied heavily on correlations and unproven assumptions, and the science and technology behind heat pipes have barely evolved in recent decades. The model introduced in this thesis, however, presents a comprehensive physically based description of both the liquid and the gas phase. The model has been implemented numerically and successfully validated against the available experimental data, and the numerical results are used to determine the key physical processes that control the heat and mass flow and describe the flow stability. One of the key contributions of this thesis work is the description of the role of noncondensables, such as air, on transport. In particular, it is shown that many of the assumptions used by current engineering models of evaporative cooling devices are based on experiments conducted at atmospheric pressures, and these assumptions break down partially or completely when most of the noncondensables are removed, requiring a new modeling approach presented in the thesis. Moreover, Numerical solutions are used to motivate and justify a simplified analytical description of transport in both the liquid and the gas layer, which can be used to describe flow stability and determine the critical Marangoni number and wavelength describing the onset of the convective pattern. As a result, the results presented in the thesis should be of interest both to engineers working in heat transfer and researchers interested in fluid dynamics and pattern formation. 
650 0 |a Physics. 
650 0 |a Energy systems. 
650 0 |a Fluids. 
650 0 |a Thermodynamics. 
650 0 |a Fluid mechanics. 
650 1 4 |a Physics. 
650 2 4 |a Thermodynamics. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Energy Systems. 
650 2 4 |a Fluid- and Aerodynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319613307 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-61331-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)