Stable Non-Gaussian Self-Similar Processes with Stationary Increments

This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book re...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pipiras, Vladas (Συγγραφέας), Taqqu, Murad S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Probability and Mathematical Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02567nam a22005055i 4500
001 978-3-319-62331-3
003 DE-He213
005 20170831100620.0
007 cr nn 008mamaa
008 170831s2017 gw | s |||| 0|eng d
020 |a 9783319623313  |9 978-3-319-62331-3 
024 7 |a 10.1007/978-3-319-62331-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Pipiras, Vladas.  |e author. 
245 1 0 |a Stable Non-Gaussian Self-Similar Processes with Stationary Increments  |h [electronic resource] /  |c by Vladas Pipiras, Murad S. Taqqu. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 135 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Probability and Mathematical Statistics,  |x 2365-4333 
505 0 |a Preliminaries -- Minimality, Rigidity, and Flows -- Mixed Moving Averages and Self-similarity -- A. Historical Notes -- B. Standard Lebesgue Spaces and Projections -- C. Notation Summary. 
520 |a This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity. In-depth appendices are also included. This book is aimed at graduate students and researchers working in probability theory and statistics. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
700 1 |a Taqqu, Murad S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319623306 
830 0 |a SpringerBriefs in Probability and Mathematical Statistics,  |x 2365-4333 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-62331-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)