Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology

This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and com...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Holcman, David (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04573nam a22004575i 4500
001 978-3-319-62627-7
003 DE-He213
005 20171004082406.0
007 cr nn 008mamaa
008 171004s2017 gw | s |||| 0|eng d
020 |a 9783319626277  |9 978-3-319-62627-7 
024 7 |a 10.1007/978-3-319-62627-7  |2 doi 
040 |d GrThAP 
050 4 |a QH323.5 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
245 1 0 |a Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology  |h [electronic resource] /  |c edited by David Holcman. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 377 p. 58 illus., 52 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I: Stochastic Chemical Reactions.- Test Models for Statistical Inference: Two-Dimensional Reaction Systems Displaying Limit Cycle Bifurcations and Bistability.- Importance Sampling for Metastable and Multiscale Dynamical Systems.- Multiscale Simulation of Stochastic Reaction-diffusion Networks.- Part II: Stochastic Numerical Approaches, Algorithms and Coarse-Grained Simulations.- Numerical Methods for Ergodic SDEs: When Stochastic Integration Meets Geometric Integration.- Stability and Strong Convergence for Spatial Stochastic Kinetics.- The T cells in an Ageing Virtual Mouse.- Part III: Analysis of Stochastic Dynamical Systems for Modeling Cell Biology.- Model reduction for Stochastic Reaction Systems.- ZI-closure Scheme: A Method to Solve and Study Stochastic Reaction Networks.- Deterministic and Stochastic Becker-Döring Equations: Past and Recent Mathematical Developments.- Coagulation-Fragmentation with a Finite Number of Particles: Models, Stochastic Analysis and Applications to Telomere Clustering and Viral Capsid Assembly.- A Review of Stochastic and Delay Simulation Approaches in both Time and Space in Computational Cell Biology -- Part IV: Diffusion Processes and Stochastic Modeling.- Recent Mathematical Models of Axonal Transport -- Stochastic Models for Evolving Cellular Populations of Mitochondria: Disease, Development, and Ageing.- Modeling and Stochastic Analysis of the Single Photon Response -- A Phenomenological Spatial Model for Macro-ecological Patterns in Species-rich Ecosystems. 
520 |a This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology. 
650 0 |a Mathematics. 
650 0 |a Systems biology. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Physiological, Cellular and Medical Topics. 
650 2 4 |a Systems Biology. 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory. 
650 2 4 |a Systems Biology. 
700 1 |a Holcman, David.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319626260 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-62627-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)