Web Microanalysis of Big Image Data

This book looks at the increasing interest in running microscopy processing algorithms on big image data by presenting the theoretical and architectural underpinnings of a web image processing pipeline (WIPP). Software-based methods and infrastructure components for processing big data microscopy ex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bajcsy, Peter (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Chalfoun, Joe (http://id.loc.gov/vocabulary/relators/aut), Simon, Mylene (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04579nam a2200553 4500
001 978-3-319-63360-2
003 DE-He213
005 20191026003054.0
007 cr nn 008mamaa
008 180122s2018 gw | s |||| 0|eng d
020 |a 9783319633602  |9 978-3-319-63360-2 
024 7 |a 10.1007/978-3-319-63360-2  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
072 7 |a TTBM  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TTBM  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Bajcsy, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Web Microanalysis of Big Image Data  |h [electronic resource] /  |c by Peter Bajcsy, Joe Chalfoun, Mylene Simon. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XX, 197 p. 103 illus., 93 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction -- 2 Using Web Image Processing Pipeline for Big Data Microscopy Experiments -- 3 Example Use Cases -- 4 Building Web Image Processing Pipeline for Big Images -- 5 Image Processing Algorithms -- 6 Interoperability Between Software and Hardware -- 7 Supplementary Information. 
520 |a This book looks at the increasing interest in running microscopy processing algorithms on big image data by presenting the theoretical and architectural underpinnings of a web image processing pipeline (WIPP). Software-based methods and infrastructure components for processing big data microscopy experiments are presented to demonstrate how information processing of repetitive, laborious and tedious analysis can be automated with a user-friendly system. Interactions of web system components and their impact on computational scalability, provenance information gathering, interactive display, and computing are explained in a top-down presentation of technical details. Web Microanalysis of Big Image Data includes descriptions of WIPP functionalities, use cases, and components of the web software system (web server and client architecture, algorithms, and hardware-software dependencies). The book comes with test image collections and a web software system to increase the reader's understanding and to provide practical tools for conducting big image experiments. By providing educational materials and software tools at the intersection of microscopy image analyses and computational science, graduate students, postdoctoral students, and scientists will benefit from the practical experiences, as well as theoretical insights. Furthermore, the book provides software and test data, empowering students and scientists with tools to make discoveries with higher statistical significance. Once they become familiar with the web image processing components, they can extend and re-purpose the existing software to new types of analyses. Each chapter follows a top-down presentation, starting with a short introduction and a classification of related methods. Next, a description of the specific method used in accompanying software is presented. For several topics, examples of how the specific method is applied to a dataset (parameters, RAM requirements, CPU efficiency) are shown. Some tips are provided as practical suggestions to improve accuracy or computational performance. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Pattern recognition. 
650 0 |a Biomathematics. 
650 1 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Physiological, Cellular and Medical Topics.  |0 http://scigraph.springernature.com/things/product-market-codes/M31020 
700 1 |a Chalfoun, Joe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Simon, Mylene.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319633596 
776 0 8 |i Printed edition:  |z 9783319633619 
776 0 8 |i Printed edition:  |z 9783319875330 
856 4 0 |u https://doi.org/10.1007/978-3-319-63360-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)