Discriminative Pattern Discovery on Biological Networks

This work provides a review of biological networks as a model for analysis, presenting and discussing a number of illuminating analyses. Biological networks are an effective model for providing insights about biological mechanisms. Networks with different characteristics are employed for representin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fassetti, Fabio (Συγγραφέας), Rombo, Simona E. (Συγγραφέας), Serrao, Cristina (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03439nam a22005535i 4500
001 978-3-319-63477-7
003 DE-He213
005 20170901184910.0
007 cr nn 008mamaa
008 170901s2017 gw | s |||| 0|eng d
020 |a 9783319634777  |9 978-3-319-63477-7 
024 7 |a 10.1007/978-3-319-63477-7  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSA  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Fassetti, Fabio.  |e author.  |0 (orcid)http://orcid.org/0000-0002-8416-906X 
245 1 0 |a Discriminative Pattern Discovery on Biological Networks  |h [electronic resource] /  |c by Fabio Fassetti, Simona E. Rombo, Cristina Serrao. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 45 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Part I: Biological Networks -- Data Sources and Models -- Problems and Techniques -- Part II: Pattern Mining -- Exceptional Pattern Discovery -- Discriminating Graph Pattern Mining from Gene Expression Data. 
520 |a This work provides a review of biological networks as a model for analysis, presenting and discussing a number of illuminating analyses. Biological networks are an effective model for providing insights about biological mechanisms. Networks with different characteristics are employed for representing different scenarios. This powerful model allows analysts to perform many kinds of analyses which can be mined to provide interesting information about underlying biological behaviors. The text also covers techniques for discovering exceptional patterns, such as a pattern accounting for local similarities and also collaborative effects involving interactions between multiple actors (for example genes). Among these exceptional patterns, of particular interest are discriminative patterns, namely those which are able to discriminate between two input populations (for example healthy/unhealthy samples). In addition, the work includes a discussion on the most recent proposal on discovering discriminative patterns, in which there is a labeled network for each sample, resulting in a database of networks representing a sample set. This enables the analyst to achieve a much finer analysis than with traditional techniques, which are only able to consider an aggregated network of each population. 
650 0 |a Computer science. 
650 0 |a Gene expression. 
650 0 |a Data mining. 
650 0 |a Pattern recognition. 
650 0 |a Bioinformatics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Gene Expression. 
700 1 |a Rombo, Simona E.  |e author. 
700 1 |a Serrao, Cristina.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319634760 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-63477-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)