Ramanujan Summation of Divergent Series

The aim of this monograph is to give a detailed exposition of the summation method that Ramanujan uses in Chapter VI of his second Notebook. This method, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic funct...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Candelpergher, Bernard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2185
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02865nam a22005055i 4500
001 978-3-319-63630-6
003 DE-He213
005 20170915012840.0
007 cr nn 008mamaa
008 170912s2017 gw | s |||| 0|eng d
020 |a 9783319636306  |9 978-3-319-63630-6 
024 7 |a 10.1007/978-3-319-63630-6  |2 doi 
040 |d GrThAP 
050 4 |a QA292 
050 4 |a QA295 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.24  |2 23 
100 1 |a Candelpergher, Bernard.  |e author. 
245 1 0 |a Ramanujan Summation of Divergent Series  |h [electronic resource] /  |c by Bernard Candelpergher. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXIII, 195 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2185 
505 0 |a Introduction: The Summation of Series --  1 Ramanujan Summation -- 3 Properties of the Ramanujan Summation -- 3 Dependence on a Parameter -- 4 Transformation Formulas -- 5 An Algebraic View on the Summation of Series -- 6 Appendix -- 7 Bibliography -- 8 Chapter VI of the Second Ramanujan's Notebook. 
520 |a The aim of this monograph is to give a detailed exposition of the summation method that Ramanujan uses in Chapter VI of his second Notebook. This method, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical evaluation, a formula in terms of convergent series is provided by the use of Newton interpolation. The relation with other summation processes such as those of Borel and Euler is also studied. Finally, in the last chapter, a purely algebraic theory is developed that unifies all these summation processes. This monograph is aimed at graduate students and researchers who have a basic knowledge of analytic function theory. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 0 |a Sequences (Mathematics). 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319636290 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2185 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-63630-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)