Numerical Methods for Time-Resolved Quantum Nanoelectronics

This thesis develops novel numerical techniques for simulating quantum transport in the time domain and applies them to pertinent physical systems such as flying qubits in electronic interferometers and superconductor/semiconductor junctions hosting Majorana bound states (the key ingredient for topo...

Full description

Bibliographic Details
Main Author: Weston, Joseph (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:This thesis develops novel numerical techniques for simulating quantum transport in the time domain and applies them to pertinent physical systems such as flying qubits in electronic interferometers and superconductor/semiconductor junctions hosting Majorana bound states (the key ingredient for topological quantum computing). In addition to exploring the rich new physics brought about by time dependence, the thesis also develops software that can be used to simulate nanoelectronic systems with arbitrary geometry and time dependence, offering a veritable toolbox for exploring this rapidly growing domain.
Physical Description:XIII, 138 p. 53 illus., 10 illus. in color. online resource.
ISBN:9783319636917
ISSN:2190-5053