Linear Algebra

This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Said-Houari, Belkacem (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017.
Σειρά:Compact Textbooks in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03095nam a22004335i 4500
001 978-3-319-63793-8
003 DE-He213
005 20171005120451.0
007 cr nn 008mamaa
008 171005s2017 gw | s |||| 0|eng d
020 |a 9783319637938  |9 978-3-319-63793-8 
024 7 |a 10.1007/978-3-319-63793-8  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Said-Houari, Belkacem.  |e author. 
245 1 0 |a Linear Algebra  |h [electronic resource] /  |c by Belkacem Said-Houari. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a XIII, 384 p. 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Compact Textbooks in Mathematics,  |x 2296-4568 
520 |a This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing the necessary concepts of eigenvalues and eigenvectors, as well as the theory of symmetric and orthogonal matrices. Each idea presented is followed by examples.   The book includes a set of exercises at the end of each chapter, which have been carefully chosen to illustrate the main ideas. Some of them were taken (with some modifications) from recently published papers, and appear in a textbook for the first time. Detailed solutions are provided for every exercise, and these refer to the main theorems in the text when necessary, so students can see the tools used in the solution. . 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319637921 
830 0 |a Compact Textbooks in Mathematics,  |x 2296-4568 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-63793-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)