An Introduction to Machine Learning

This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kubat, Miroslav (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03462nam a22005055i 4500
001 978-3-319-63913-0
003 DE-He213
005 20170831174956.0
007 cr nn 008mamaa
008 170831s2017 gw | s |||| 0|eng d
020 |a 9783319639130  |9 978-3-319-63913-0 
024 7 |a 10.1007/978-3-319-63913-0  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Kubat, Miroslav.  |e author. 
245 1 3 |a An Introduction to Machine Learning  |h [electronic resource] /  |c by Miroslav Kubat. 
250 |a 2nd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 348 p. 85 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 A Simple Machine-Learning Task -- 2 Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- 4 Inter-Class Boundaries: Linear and Polynomial Classifiers -- 5 Artificial Neural Networks -- 6 Decision Trees -- 7 Computational Learning Theory -- 8 A Few Instructive Applications -- 9 Induction of Voting Assemblies -- 10 Some Practical Aspects to Know About -- 11 Performance Evaluation -- 12 Statistical Significance -- 13 Induction in Multi-Label Domains -- 14 Unsupervised Learning -- 15 Classifiers in the Form of Rulesets -- 16 The Genetic Algorithm -- 17 Reinforcement Learning. 
520 |a This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction as well as Inductive Logic Programming. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work. 
650 0 |a Computer science. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Computational Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319639123 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-63913-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)