An Introduction to Machine Learning

This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kubat, Miroslav (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 A Simple Machine-Learning Task
  • 2 Probabilities: Bayesian Classifiers
  • Similarities: Nearest-Neighbor Classifiers
  • 4 Inter-Class Boundaries: Linear and Polynomial Classifiers
  • 5 Artificial Neural Networks
  • 6 Decision Trees
  • 7 Computational Learning Theory
  • 8 A Few Instructive Applications
  • 9 Induction of Voting Assemblies
  • 10 Some Practical Aspects to Know About
  • 11 Performance Evaluation
  • 12 Statistical Significance
  • 13 Induction in Multi-Label Domains
  • 14 Unsupervised Learning
  • 15 Classifiers in the Form of Rulesets
  • 16 The Genetic Algorithm
  • 17 Reinforcement Learning.