Self-powered SoC Platform for Analysis and Prediction of Cardiac Arrhythmias

This book presents techniques necessary to predict cardiac arrhythmias, long before they occur, based on minimal ECG data. The authors describe the key information needed for automated ECG signal processing, including ECG signal pre-processing, feature extraction and classification. The adaptive and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Saleh, Hani (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Bayasi, Nourhan (http://id.loc.gov/vocabulary/relators/aut), Mohammad, Baker (http://id.loc.gov/vocabulary/relators/aut), Ismail, Mohammed (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Analog Circuits and Signal Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:This book presents techniques necessary to predict cardiac arrhythmias, long before they occur, based on minimal ECG data. The authors describe the key information needed for automated ECG signal processing, including ECG signal pre-processing, feature extraction and classification. The adaptive and novel ECG processing techniques introduced in this book are highly effective and suitable for real-time implementation on ASICs. Provides a full overview of ECG signal processing basics and contemporary advances in the field; Introduces a new set of novel ECG signal features for automated ECG signal analysis; Enables readers to invent new ECG signal features and determine if they can be effective in predicting or diagnosing cardiac arrhythmias and related disorders; Demonstrates results, supported by silicon validation and real-chip tape-outs.
Φυσική περιγραφή:XVI, 74 p. 46 illus., 34 illus. in color. online resource.
ISBN:9783319639734
ISSN:1872-082X
DOI:10.1007/978-3-319-63973-4