Self-powered SoC Platform for Analysis and Prediction of Cardiac Arrhythmias

This book presents techniques necessary to predict cardiac arrhythmias, long before they occur, based on minimal ECG data. The authors describe the key information needed for automated ECG signal processing, including ECG signal pre-processing, feature extraction and classification. The adaptive and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Saleh, Hani (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Bayasi, Nourhan (http://id.loc.gov/vocabulary/relators/aut), Mohammad, Baker (http://id.loc.gov/vocabulary/relators/aut), Ismail, Mohammed (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Analog Circuits and Signal Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03369nam a2200541 4500
001 978-3-319-63973-4
003 DE-He213
005 20191220130310.0
007 cr nn 008mamaa
008 171024s2018 gw | s |||| 0|eng d
020 |a 9783319639734  |9 978-3-319-63973-4 
024 7 |a 10.1007/978-3-319-63973-4  |2 doi 
040 |d GrThAP 
050 4 |a TK7888.4 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
072 7 |a TJFC  |2 thema 
082 0 4 |a 621.3815  |2 23 
100 1 |a Saleh, Hani.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Self-powered SoC Platform for Analysis and Prediction of Cardiac Arrhythmias   |h [electronic resource] /  |c by Hani Saleh, Nourhan Bayasi, Baker Mohammad, Mohammed Ismail. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVI, 74 p. 46 illus., 34 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Analog Circuits and Signal Processing,  |x 1872-082X 
505 0 |a Introduction -- Literature Review -- System Design and Development -- Hardware Design and Implementation -- Performance and Result -- Conclusions -- Bibliography -- Index. 
520 |a This book presents techniques necessary to predict cardiac arrhythmias, long before they occur, based on minimal ECG data. The authors describe the key information needed for automated ECG signal processing, including ECG signal pre-processing, feature extraction and classification. The adaptive and novel ECG processing techniques introduced in this book are highly effective and suitable for real-time implementation on ASICs. Provides a full overview of ECG signal processing basics and contemporary advances in the field; Introduces a new set of novel ECG signal features for automated ECG signal analysis; Enables readers to invent new ECG signal features and determine if they can be effective in predicting or diagnosing cardiac arrhythmias and related disorders; Demonstrates results, supported by silicon validation and real-chip tape-outs. 
650 0 |a Electronic circuits. 
650 0 |a Microprocessors. 
650 0 |a Biomedical engineering. 
650 1 4 |a Circuits and Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/T24068 
650 2 4 |a Processor Architectures.  |0 http://scigraph.springernature.com/things/product-market-codes/I13014 
650 2 4 |a Biomedical Engineering and Bioengineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T2700X 
700 1 |a Bayasi, Nourhan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Mohammad, Baker.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ismail, Mohammed.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319639727 
776 0 8 |i Printed edition:  |z 9783319639741 
776 0 8 |i Printed edition:  |z 9783319876863 
830 0 |a Analog Circuits and Signal Processing,  |x 1872-082X 
856 4 0 |u https://doi.org/10.1007/978-3-319-63973-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)