Probability and Statistics for Computer Science

This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Forsyth, David (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04665nam a2200493 4500
001 978-3-319-64410-3
003 DE-He213
005 20191028161717.0
007 cr nn 008mamaa
008 171214s2018 gw | s |||| 0|eng d
020 |a 9783319644103  |9 978-3-319-64410-3 
024 7 |a 10.1007/978-3-319-64410-3  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 005.55  |2 23 
100 1 |a Forsyth, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Probability and Statistics for Computer Science  |h [electronic resource] /  |c by David Forsyth. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXIV, 367 p. 124 illus., 84 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Notation and conventions -- 2 First Tools for Looking at Data -- 3 Looking at Relationships -- 4 Basic ideas in probability -- 5 Random Variables and Expectations -- 6 Useful Probability Distributions -- 7 Samples and Populations -- 8 The Significance of Evidence -- 9 Experiments -- 10 Inferring Probability Models from Data -- 11 Extracting Important Relationships in High Dimensions -- 12 Learning to Classify -- 13 Clustering: Models of High Dimensional Data -- 14 Regression -- 15 Markov Chains and Hidden Markov Models -- 16 Resources. 
520 |a This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features: •   A treatment of random variables and expectations dealing primarily with the discrete case. •   A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains. •   A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing. •   A chapter dealing with classification, explaining why it's useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors. •   A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems. •   A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. •   A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals. Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know.   Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides. 
650 0 |a Mathematical statistics. 
650 0 |a Computer simulation. 
650 0 |a Statistics . 
650 1 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
650 2 4 |a Simulation and Modeling.  |0 http://scigraph.springernature.com/things/product-market-codes/I19000 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 http://scigraph.springernature.com/things/product-market-codes/S12008 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319644097 
776 0 8 |i Printed edition:  |z 9783319644110 
776 0 8 |i Printed edition:  |z 9783319877884 
856 4 0 |u https://doi.org/10.1007/978-3-319-64410-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)