Probability and Statistics for Computer Science
This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topic...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Notation and conventions
- 2 First Tools for Looking at Data
- 3 Looking at Relationships
- 4 Basic ideas in probability
- 5 Random Variables and Expectations
- 6 Useful Probability Distributions
- 7 Samples and Populations
- 8 The Significance of Evidence
- 9 Experiments
- 10 Inferring Probability Models from Data
- 11 Extracting Important Relationships in High Dimensions
- 12 Learning to Classify
- 13 Clustering: Models of High Dimensional Data
- 14 Regression
- 15 Markov Chains and Hidden Markov Models
- 16 Resources.