Probability and Statistics for Computer Science

This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Forsyth, David (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Notation and conventions
  • 2 First Tools for Looking at Data
  • 3 Looking at Relationships
  • 4 Basic ideas in probability
  • 5 Random Variables and Expectations
  • 6 Useful Probability Distributions
  • 7 Samples and Populations
  • 8 The Significance of Evidence
  • 9 Experiments
  • 10 Inferring Probability Models from Data
  • 11 Extracting Important Relationships in High Dimensions
  • 12 Learning to Classify
  • 13 Clustering: Models of High Dimensional Data
  • 14 Regression
  • 15 Markov Chains and Hidden Markov Models
  • 16 Resources.