Algorithms and Programs of Dynamic Mixture Estimation Unified Approach to Different Types of Components /

This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Nagy, Ivan (Συγγραφέας), Suzdaleva, Evgenia (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03049nam a22005655i 4500
001 978-3-319-64671-8
003 DE-He213
005 20171129041720.0
007 cr nn 008mamaa
008 170816s2017 gw | s |||| 0|eng d
020 |a 9783319646718  |9 978-3-319-64671-8 
024 7 |a 10.1007/978-3-319-64671-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Nagy, Ivan.  |e author. 
245 1 0 |a Algorithms and Programs of Dynamic Mixture Estimation  |h [electronic resource] :  |b Unified Approach to Different Types of Components /  |c by Ivan Nagy, Evgenia Suzdaleva. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 113 p. 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 |a Introduction -- Basic Models -- Statistical Analysis of Dynamic Mixtures -- Dynamic Mixture Estimation -- Program Codes -- Experiments -- Appendices. 
520 |a This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms. 
650 0 |a Mathematics. 
650 0 |a Computer simulation. 
650 0 |a System theory. 
650 0 |a Algorithms. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Algorithms. 
700 1 |a Suzdaleva, Evgenia.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319646701 
830 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-64671-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)