New Era for Robust Speech Recognition Exploiting Deep Learning /

This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhanceme...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Watanabe, Shinji (Επιμελητής έκδοσης), Delcroix, Marc (Επιμελητής έκδοσης), Metze, Florian (Επιμελητής έκδοσης), Hershey, John R. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03222nam a22005295i 4500
001 978-3-319-64680-0
003 DE-He213
005 20171031110448.0
007 cr nn 008mamaa
008 171031s2017 gw | s |||| 0|eng d
020 |a 9783319646800  |9 978-3-319-64680-0 
024 7 |a 10.1007/978-3-319-64680-0  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a New Era for Robust Speech Recognition  |h [electronic resource] :  |b Exploiting Deep Learning /  |c edited by Shinji Watanabe, Marc Delcroix, Florian Metze, John R. Hershey. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 436 p. 76 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Speech and Language Processing -- Automatic Speech Recognition (ASR) -- Recent Applications -- Signal-Processing-Based Front-End for Robust ASR -- Generative Model-Based Speech Enhancement -- Denoising Autoencoder -- Discriminative Microphone Array Enhancement -- Learning Robust Feature Representation -- Training Data Augmentation -- Adaptation and Augmented Features -- Novel Model Topologies -- Novel Objective Criteria -- Benchmark Data, Tools, and Systems. 
520 |a This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 0 |a Linguistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Language Translation and Linguistics. 
650 2 4 |a Linguistics, general. 
700 1 |a Watanabe, Shinji.  |e editor. 
700 1 |a Delcroix, Marc.  |e editor. 
700 1 |a Metze, Florian.  |e editor. 
700 1 |a Hershey, John R.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319646794 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-64680-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)