Statistical Distributions Applications and Parameter Estimates /

This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability.  Understanding statistical distributions is fundamental for researchers in almost all disciplines.  The informed researcher will select the statistical distri...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Thomopoulos, Nick T. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04455nam a22004215i 4500
001 978-3-319-65112-5
003 DE-He213
005 20171010181947.0
007 cr nn 008mamaa
008 171010s2017 gw | s |||| 0|eng d
020 |a 9783319651125  |9 978-3-319-65112-5 
024 7 |a 10.1007/978-3-319-65112-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Thomopoulos, Nick T.  |e author. 
245 1 0 |a Statistical Distributions  |h [electronic resource] :  |b Applications and Parameter Estimates /  |c by Nick T. Thomopoulos. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 172 p. 22 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Statistical Concepts -- Continuous Uniform -- Exponential -- Erlang -- Gamma -- Beta -- Weibull -- Normal -- Lognormal -- Left Truncated Normal -- Right Truncated Normal -- Triangular -- Discrete Uniform -- Binomial -- Geometric -- Pascal -- Poisson -- Hyper-Geometric -- Bivariate Normal -- Bivariate Lognormal. 
520 |a This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability.  Understanding statistical distributions is fundamental for researchers in almost all disciplines.  The informed researcher will select the statistical distribution that best fits the data in the study at hand.  Some of the distributions are well known to the general researcher and are in use in a wide variety of ways.  Other useful distributions are less understood and are not in common use.  The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study.  The distributions are for continuous, discrete, and bivariate random variables.  In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values.  In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies.  These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal.  Some are from continuous data and others are from discrete and bivariate data.  This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations.  Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data.  Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines. Includes 89 examples that help the reader apply the concepts presented Explains how to compute cumulative probability for all distributions including Erlang, gamma, beta, Weibull, normal, and lognormal Utilizes sample data to estimate parameter values of each distribution Estimates parameter values when no sample data Introduces Left-Truncated Normal Introduces Right-Truncated Normal Introduces Spread Ratio. 
650 0 |a Statistics. 
650 0 |a Probabilities. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319651118 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-65112-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)