Introduction to Relation Algebras Relation Algebras, Volume 1 /

The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Givant, Steven (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03465nam a22004455i 4500
001 978-3-319-65235-1
003 DE-He213
005 20170830155605.0
007 cr nn 008mamaa
008 170830s2017 gw | s |||| 0|eng d
020 |a 9783319652351  |9 978-3-319-65235-1 
024 7 |a 10.1007/978-3-319-65235-1  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Givant, Steven.  |e author. 
245 1 0 |a Introduction to Relation Algebras  |h [electronic resource] :  |b Relation Algebras, Volume 1 /  |c by Steven Givant. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXXII, 572 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- 1. The calculus of relations -- 2. Relation algebras -- 3. Examples of relation algebras -- 4. Arithmetic -- 5. Special elements -- 6. Subalgebras -- 7. Homomorphisms -- 8. Ideals and quotients -- 9. Simple algebras -- 10. Relativizations -- 11. Direct products -- 12. Subdirect products -- 13. Minimal relation algebras -- References -- Index. 
520 |a The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly suited to independent study, and provide an unparalleled opportunity to learn from one of the leading authorities in the field. Collecting, curating, and illuminating over 75 years of progress since Tarski's seminal work in 1941, this textbook in two volumes offers a landmark, unified treatment of the increasingly relevant field of relation algebras. Clear and insightful prose guides the reader through material previously only available in scattered, highly-technical journal articles. Students and experts alike will appreciate the work as both a textbook and invaluable reference for the community. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a General Algebraic Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319652344 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-65235-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)