Targeted Learning in Data Science Causal Inference for Complex Longitudinal Studies /
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by usin...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | Springer Series in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Abbreviations and Notation
- Philosophy of Targeted Learning in Data Science
- Part I: Introductory Chapters
- 1. The Statistical Estimation Problem in Complex Longitudinal Big Data
- 2. Longitudinal Causal Models
- 3. Super Learner for Longitudinal Problems
- 4. Longitudinal Targeted Maximum Likelihood Estimation (LTMLE)
- 5. Understanding LTMLE
- 6. Why LTMLE?
- Part II:Additional Core Topics
- 7. One-Step TMLE
- IV: Observational Longitudinal Data
- 19. Super Learning in the ICU
- 20. Stochastic Single-Time-Point Interventions
- 21. Stochastic Multiple-Time-Point Interventions on Monitoring and Treatment
- 22. Collaborative LTMLE
- Part V: Optimal Dynamic Regimes
- 23. Targeted Adaptive Designs Learning the Optimal Dynamic Treatment
- 24. Targeted Learning of the Optimal Dynamic Treatment
- 25. Optimal Dynamic Treatments under Resource Constraints
- Part VI: Computing
- 26. ltmle() for R
- 27. Scaled Super Learner for R
- 28. Scaling CTMLE for Julia
- Part VII: Special Topics.-29. Data-Adaptive Target Parameters
- 30. Double Robust Inference for LTMLE
- 31. Higher-Order TMLE
- Appendix
- A. Online Targeted Learning Theory
- B. Computerization of the calculation of efficient influence curve
- C. TMLE applied to Capture/Recapture
- D. TMLE for High Dimensional Linear Regression
- E. TMLE of Causal Effect Based on Observing a Single Time Series.