Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere

This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Skiba, Yuri N. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02946nam a22004815i 4500
001 978-3-319-65412-6
003 DE-He213
005 20170921162020.0
007 cr nn 008mamaa
008 170921s2017 gw | s |||| 0|eng d
020 |a 9783319654126  |9 978-3-319-65412-6 
024 7 |a 10.1007/978-3-319-65412-6  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Skiba, Yuri N.  |e author. 
245 1 0 |a Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere  |h [electronic resource] /  |c by Yuri N. Skiba. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 239 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 01- Introduction -- Chapter 02- Spaces of Functions on a Sphere -- Chapter 03- Solvability of Vorticity Equation on a Sphere -- Chapter 04- Dynamics of Ideal Fluid on a Sphere -- Chapter 05- Stability of Rossby-Haurwitz (RH) Waves -- Chapter 06- Stability of Modons and Wu-Verkley waves -- Chapter 07- Linear and Nonlinear Stability of Flows -- Chapter 08- Numerical Study of Linear Stability -- References. 
520 |a This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability. 
650 0 |a Mathematics. 
650 0 |a Atmospheric sciences. 
650 0 |a Mathematical physics. 
650 0 |a Fluids. 
650 0 |a Environmental sciences. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Math. Appl. in Environmental Science. 
650 2 4 |a Atmospheric Sciences. 
650 2 4 |a Fluid- and Aerodynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319654119 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-65412-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)