Topics in Mathematical Biology

This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hadeler, Karl Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes on Mathematical Modelling in the Life Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03274nam a22004455i 4500
001 978-3-319-65621-2
003 DE-He213
005 20171220222731.0
007 cr nn 008mamaa
008 171220s2017 gw | s |||| 0|eng d
020 |a 9783319656212  |9 978-3-319-65621-2 
024 7 |a 10.1007/978-3-319-65621-2  |2 doi 
040 |d GrThAP 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PDE  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Hadeler, Karl Peter.  |e author. 
245 1 0 |a Topics in Mathematical Biology  |h [electronic resource] /  |c by Karl Peter Hadeler. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIV, 353 p. 28 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes on Mathematical Modelling in the Life Sciences,  |x 2193-4789 
505 0 |a Preface -- 1.Coupling and quiescence -- 2.Delay and age -- 3.Lotka-Volterra and replicator systems -- 4.Ecology -- 5.Homogeneous systems -- 6.Epidemic models -- 7.Coupled movements -- 8.Traveling fronts -- Index. 
520 |a This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts.  The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read. 
650 0 |a Mathematics. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical and Computational Biology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319656205 
830 0 |a Lecture Notes on Mathematical Modelling in the Life Sciences,  |x 2193-4789 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-65621-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)