Nearly Pseudo-Kähler Manifolds and Related Special Holonomies

Developing and providing an overview of recent results on nearly Kähler geometry on pseudo-Riemannian manifolds, this monograph emphasizes the differences with the classical Riemannian geometry setting. The focal objects of the text are related to special holonomy and Killing spinors and have applic...

Full description

Bibliographic Details
Main Author: Schäfer, Lars (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Lecture Notes in Mathematics, 2201
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02667nam a22004455i 4500
001 978-3-319-65807-0
003 DE-He213
005 20170914151000.0
007 cr nn 008mamaa
008 170914s2017 gw | s |||| 0|eng d
020 |a 9783319658070  |9 978-3-319-65807-0 
024 7 |a 10.1007/978-3-319-65807-0  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Schäfer, Lars.  |e author. 
245 1 0 |a Nearly Pseudo-Kähler Manifolds and Related Special Holonomies  |h [electronic resource] /  |c by Lars Schäfer. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VII, 183 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2201 
505 0 |a Preface -- Chapter 1.  Introduction.- Chapter 2. Preliminaries -- Chapter 3. Nearly pseudo-Kähler and nearly para-Kähler manifolds.- Chapter 4. Hitchin's flow equations.- Bibliography. 
520 |a Developing and providing an overview of recent results on nearly Kähler geometry on pseudo-Riemannian manifolds, this monograph emphasizes the differences with the classical Riemannian geometry setting. The focal objects of the text are related to special holonomy and Killing spinors and have applications in high energy physics, such as supergravity and string theory. Before starting into the field, a self-contained introduction to the subject is given, aimed at students with a solid background in differential geometry. The book will therefore be accessible to masters and Ph.D. students who are beginning work on nearly Kähler geometry in pseudo-Riemannian signature, and also to non-experts interested in gaining an overview of the subject.  Moreover, a number of results and techniques are provided which will be helpful for differential geometers as well as for high energy physicists interested in the mathematical background of the geometric objects they need. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319658063 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2201 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-65807-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)